Bipartite minors

نویسندگان

  • Maria Chudnovsky
  • Gil Kalai
  • Eran Nevo
  • Isabella Novik
  • Paul D. Seymour
چکیده

We introduce a notion of bipartite minors and prove a bipartite analog of Wagner’s theorem: a bipartite graph is planar if and only if it does not contain K3,3 as a bipartite minor. Similarly, we provide a forbidden minor characterization for outerplanar graphs and forests. We then establish a recursive characterization of bipartite (2, 2)-Laman graphs — a certain family of graphs that contains all maximal bipartite planar graphs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graphs of Small Rank-width Are Pivot-minors of Graphs of Small Tree-width

We prove that every graph of rank-width k is a pivot-minor of a graph of tree-width at most 2k. We also prove that graphs of rank-width at most 1, equivalently distance-hereditary graphs, are exactly vertex-minors of trees, and graphs of linear rank-width at most 1 are precisely vertex-minors of paths. In addition, we show that bipartite graphs of rank-width at most 1 are exactly pivot-minors o...

متن کامل

Graphs of Small Rank-width are Pivot-minors of Graphs of Small Tree-width

We prove that every graph of rank-width k is a pivot-minor of a graph of tree-width at most 2k. We also prove that graphs of rank-width at most 1, equivalently distance-hereditary graphs, are exactly vertex-minors of trees, and graphs of linear rank-width at most 1 are precisely vertex-minors of paths. In addition, we show that bipartite graphs of rank-width at most 1 are exactly pivot-minors o...

متن کامل

Interval minors of complete bipartite graphs

Interval minors of bipartite graphs were recently introduced by Jacob Fox in the study of Stanley-Wilf limits. We investigate the maximum number of edges in Kr,s-interval minor free bipartite graphs. We determine exact values when r = 2 and describe the extremal graphs. For r = 3, lower and upper bounds are given and the structure of K3,s-interval minor free graphs is studied.

متن کامل

Rank-width and vertex-minors

The rank-width is a graph parameter related in terms of fixed functions to cliquewidth but more tractable. Clique-width has nice algorithmic properties, but no good “minor” relation is known analogous to graph minor embedding for tree-width. In this paper, we discuss the vertex-minor relation of graphs and its connection with rank-width. We prove a relationship between vertex-minors of bipartit...

متن کامل

Linear Connectivity Forces Large Complete Bipartite Minors: the Patch for the Large Tree-Width Case

The recent paper ‘Linear Connectivity Forces Large Complete Bipartite Minors’ by Böhme et al. relies on a structure theorem for graphs with no H-minor. The sketch provided of how to deduce this theorem from the work of Robertson and Seymour appears to be incomplete. To fill this gap, we modify the main proof of that paper to work with a mere restatement of Robertson and Seymour’s original resul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. B

دوره 116  شماره 

صفحات  -

تاریخ انتشار 2016